¹«º£²Ê´¬

¹«º£²Ê´¬

½ñÈÕÌìÆø£º

ʦ×ʲ½¶Ó

ʦ×ʲ½¶Ó

ÓÍÆøÌ↑·¢¹¤³Ìϵ

ÓÚº£Ñó

Ðû²¼Ê±¼ä£º2016-09-20ȪԴ£º
¡¡¡¡
ÄÚ²¿Í·Ïñ.jpg  

ÐÕÃû£º ÓÚº£Ñó

Ö°³Æ£º ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦


½ÌÓýÓëÊÂÇéÂÄÀú£º

2001-2005 ´óÁ¬Àí¹¤´óѧ ¶¯Á¦¹¤³Ì ±¾¿Æ

2005-2008 Ç廪´óѧ ÈÈÄܹ¤³Ì ˶ʿ

2008-2012 ÃÀ¹úµÂÖÝ´óѧ°Â˹͡·ÖУ(UT-Austin) ʯÓ͹¤³Ì ²©Ê¿

2012-2015 ¹«º£²Ê´¬£¨±±¾©£© ½²Ê¦£¬Ð£ÇàÄê°Î¼âÈ˲Å

2015-2020 ¹«º£²Ê´¬£¨±±¾©£© ¸±½ÌÊÚ

2020ÖÁ½ñ ¹«º£²Ê´¬£¨±±¾©£© ½ÌÊÚ


µç×ÓÓÊÏ䣺 haiyangyu.cup@139.com

ÁªÏµµç»°£º 010-89733032

ËùÔÚϵËù£º ʯÓ͹¤³ÌѧԺ¡¢Ì¼ÖкÍÊ÷Ä£ÐÔÄÜԴѧԺ

Ñо¿Æ«Ïò£º ·ÇͨÀýÓÍÆøÉøÁ÷ÓëÌá¸ß²ÉÊÕÂÊ¡¢¶þÑõ»¯Ì¼¸ßЧʹÓü°·â´æ

½ÌѧÇéÐΣº ±¾¿Æ¿Î³Ì¡¶ÓͲãÎïÀí¡·¡¢¡¶Ìá¸ß²ÉÊÕÂÊ¡·¡¢¡¶Æø²Ø¹¤³Ì¡·

Ñо¿Éú¿Î³Ì¡¶¸ßµÈÓͲãÎïÀí¡·


¿ÆÑнÌѧÉùÓþ½±Àø£º

[1] ¹ú¼Ò¼¶ÇàÄêÈ˲Å£¬2021.

[2] ÖйúʯÓͺͻ¯¹¤×Ô¶¯»¯ÐÐҵЭ»áÊÖÒÕ·¢Ã÷Ò»µÈ½±£¬2020£¨ÅÅÃûµÚ¶þ£©£ºÖÂÃÜÆø²Ø·ÇÔȳƵ¼Á÷ÄÜÁ¦Ñ¹ÁѾ®²úÁ¿ºÍѹÁ¦ÆÊÎöÊÖÒÕ¼°Ó¦ÓÃ

[3] ÖйúʯÓͺͻ¯¹¤×Ô¶¯»¯ÐÐҵЭ»á¿Æ¼¼Ç°½øÒ»µÈ½±£¬2020£¨ÅÅÃûµÚ°Ë£©£º³¬µÍÉøÓͲض¯Ì¬ÁѺÛÄ£ÄâÓë¸ßЧÅÅÇýÒªº¦ÊÖÒÕ¼°¹æÄ£Ó¦ÓÃ

[4] ÉÂÎ÷Ê¡¿Æ¼¼Ç°½ø¶þµÈ½±£¬2020£¨ÅÅÃûµÚËÄ£©£º¶õ¶û¶à˹ÅèµØÎ÷²¿¶à²ãϵÌصÍÉøÓͲظßЧ¿ª·¢ÊÖÒÕÍ»ÆƼ°¹æÄ£Ó¦ÓÃ

[5] ÖйúʯÓͺͻ¯Ñ§¹¤ÒµÍŽá»á¿Æ¼¼Ç°½ø½±¶þµÈ½±£¬ 2019£¨ÅÅÃûµÚ¶þ£©£º³¬/ÌصÍÉø͸ÓͲØÁѺ۶¯Ì¬±íÕ÷Ó뿪·¢µ÷½âÓ¦ÓÃ

[6] ÖйúʯÓÍѧ»áʯÓ͹¤³ÌרҵίԱ»á£¬ÓÅÒì¾Û»áÂÛÎÄÒ»µÈ½±£¬ 2018

[7] ÖйúʯÓÍѧ»áº£ÑóʯÓͷֻᣬÓÅÒì¾Û»áÂÛÎĽ±£¬ 2018

[8] ÖйúʯÓÍѧ»á£¬µÚÊ®½ìÇàÄêѧÊõÄê»áÓÅÒìÂÛÎÄÌصȽ±£¬ 2017

[9] ¹«º£²Ê´¬£¨±±¾©£©2020-2022ѧÄê¶ÈÓÅÒìÎ÷ϯ£¬2022

[10] У¼¶½ÌѧЧ¹ûÒ»µÈ½±£¬2021¡¢2019

[11] ÖйúʯÓ͹¤³ÌÉè¼Æ´óÈüÓÅÒìÖ¸µ¼Î÷ϯ£¬2021

[12] Ê×Åú¹ú¼Ò¼¶Ò»Á÷±¾¿Æ¿Î³Ì¡¶ÓͲãÎïÀí¡·£¬2020

[13] ¹«º£²Ê´¬£¨±±¾©£©¿Æ¼¼Á¢ÒìÓÅÒìÖ¸µ¼Î÷ϯ£¬2020

[14] ¹«º£²Ê´¬£¨±±¾©£©Ê¯Ó͹¤³ÌѧԺԺ³¤½±-×î¼ÑТ˳½±£¬ 2015

[15] ¹«º£²Ê´¬£¨±±¾©£©ÇàÄê½ÌѧÖ÷¸ÉÎ÷ϯ£¬ 2015

[16] ¹«º£²Ê´¬£¨±±¾©£©ÇàÄê°Î¼âÈ˲Å£¬ 2012

[17] SPEÌá¸ß²ÉÊÕÂÊÄê»á×î¼ÑÂÛÎĽ±£¬ 2010


Ö÷³Ö×ÝÏòÏîÄ¿£¨ÏîÄ¿ÈÏÕæÈË£©£º

[1] ÖÐ×鲿¹ú¼Ò¼¶È˲ÅÖ§³ÖÏîÄ¿£¬·ÇͨÀýÓÍÆøÉøÁ÷ÓëÌá¸ß²ÉÊÕÂÊ£¬2021.12-2026.12

[2] ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð-ÃæÉÏÏîÄ¿£¬Ò³ÑÒÓÍ×¢×ÔÈ»Æø¿ª·¢ÓÍÆøÁ½ÏàÉøÁ÷΢±ê׼ЧӦ¼°ÔöÓÍ»úÀí£¬ 2021.01-2024.12

[3] ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð-ÃæÉÏÏîÄ¿£¬ÖÂÃÜÓͲØ̼»¯Ë®ÇýÌá¸ß²ÉÊÕÂÊ»úÀíÑо¿£¬2019.01-2022.12

[4] ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð-ʯÓÍ»¯¹¤ÍŽá»ù½ð£¬ÖÂÃÜÓͲØͬ¾®·ì¼ä×¢²É»úÀíÑо¿£¬2018.01-2020.12

[5] ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð-ÇàÄê»ù½ð£¬º¬ÓͶà¿×½éÖÊÖг¬´ÅÐÔÄÉÃ׿ÅÁ£µÄת´ï»úÀíÑо¿£¬2014.01-2016.12

[6] ¡°Ê®ÈýÎ塱¹ú¼Ò¿Æ¼¼ÖØ´óרÏî×Ó¿ÎÌ⣬ÖÂÃÜÓͲØ̼»¯Ë®+Íâò»îÐÔ¼ÁÇý²ÉÓÍÊÖÒÕÑо¿£¬ 2017.01-2020.06

[7] ¡°Ê®ÈýÎ塱¹ú¼Ò¿Æ¼¼ÖØ´óרÏî×Ó¿ÎÌ⣬·Ö¶ÎѹÁÑˮƽ¾®ÓͲع¤³ÌÒªÁìÑо¿£¬2017.01-2020.12

[8] ¹ú¼ÒÖصãÑз¢ÍýÏë×Ó¿ÎÌ⣬µä·¶ÐÐÒµÆóÒµÄÜÔ´ÖÎÀí¼¨Ð§²ÎÊýÖ¸±êϵͳ¼°¼¨Ð§ÌáÉý;¾¶Ñо¿£¬2016.07-2018.12

[9] ÓÍÆø×ÊÔ´Óë̽²â¹ú¼ÒÖصãʵÑéÊÒ»ù½ð£¬¶þÑõ»¯Ì¼Ìá¸ßÒ³ÑÒÓͲÉÊÕÂʼ°Âñ´æ»úÀí£¬2021.12-2023.12

[10] Ò³ÑÒÓÍÆø¸»¼¯»úÀíÓëÓÐÓÿª·¢¹ú¼ÒÖصãʵÑéÊÒ»ù½ð£¬Ò³ÑÒÓÍCO2ÍÌͲÉÓÍÊÖÒÕÑо¿£¬2018.08-2019.07

[11] У»ù½ð-ѧԺ×ÔÖ÷ÏîÄ¿£¬Î¢ÄÉÃ׿×϶ÓÍÆøÁ÷¶¯Î¢±ê׼ЧӦ£¬2020.1-2022.12

[12] УÇàÄê°Î¼âÈ˲Żù½ð£¬³¬´ÅÐÔÄÉÃ׿ÅÁ£×ª´ï»úÀí¼°¾ÛºÏÎïÇýÊÔ¾®Ñо¿£¬2013.01-2015.12


Ö÷³ÖºáÏò¿ÎÌ⣨ÏîÄ¿ÈÏÕæÈË£©£º

[1] Åè5¾®Çø´¢²ãÎÛȾ×ÛºÏÖÎÀíÊÖÒÕÑо¿£¬ÖÐʯÓÍн®ÓÍÌ2022.8-2024.6

[2] ³¬µÍÉø͸ÓͲØ×¢CO2¿ª·¢ÊÖÒÕÕþ²ßÑо¿£¬ÖÐʯÓͳ¤ÇìÓÍÌ2022.7-2023.12

[3] ³¬µÍÉøÓͲØˮƽ¾®ÉøÁ÷¾àÀë²âÊÔ¼°Ñ¹ÁÑÁѺۼä¾àÆÀ¼ÛÓÅ»¯£¬ÖÐʯÓͳ¤ÇìÓÍÌ2022.7-2022.12

[4] ¶þÑõ»¯Ì¼Î¢ÆøÅÝÔÚÇýÓÍ-·â´æÀú³ÌÖеÄÏûÈÚ¶¯Á¦Ñ§ºÍÎȹÌÐÔʵÑéÑо¿£¬ÖÐʯ»¯¹¤³ÌÔº£¬2021.9-2022.8

[5] ̼»¯Ë®Ç¿»¯ÉøÎüÖû»Ð§ÂÊÓë¶þÑõ»¯Ì¼Âñ´æ¿ÉÐÐÐÔʵÑéÑо¿£¬ÖÐʯÓͳ¤ÇìÓÍÌ2021.9-2022.6

[6] Öж«ÓÍÌïÁ÷ÌåÎïÐÔʵÑé¡¢²ÎÊý²â¶¨¼°Ë®ÇýÓÍʵÑ飬ÖÐʯÓÍ¿±Ì½Ôº£¬2021.4-2021.12

[7] ÙªÂÞϵµ×Ë®ÓͲؿØË®ÖÊÁÏ»ù´¡ÊµÑéÑо¿£¬ÖÐʯÓͳ¤ÇìÓÍÌ2021.02-2021.12

[8] ³¬¸ßѹÁѺÛÐÔÖÂÃܻӷ¢ÓͲØÔçÆÚºÏÀí¿ª·¢ÊÖÒÕÑо¿£¬ÖÐʯÓÍËþÀïľÓÍÌ2020.10-2023.9

[9] ³¬µÍÉø-ÖÂÃÜÓÍ´¢²ã×¢ÌþÀàÆøÌåÔö²¹ÄÜÁ¿·½·¨¿ÉÐÐÐÔʵÑéÆÀ¼Û£¬ÖÐʯÓͳ¤ÇìÓÍÌ 2019.08-2020.10

[10] ÖÂÃÜÑÒÐĸßθßѹÉøÎü»úÀíÑо¿£¬ÖÐʯÓÍ¿±Ì½Ôº£¬2019.10-2020.08

[11] ˮƽ¾®Í¬¾®·ì¼ä×¢²É¿ÉÐÐÐÔÑо¿£¬ÖÐʯÓÍ´óÇìÓÍÌ2018.11-2019.08

[12] ÌصÍÉøÆøÌïÉøÁ÷»úÀíÑо¿£¬Öк£ÓÍÉϺ£·Ö¹«Ë¾£¬2015.12-2016.12


Éç»áÓëѧÊõ¼æÖ°£º

[1] ¹ú¼ÒÁì¾üÆÚ¿¯¡¶Petroleum Science¡·¸±Ö÷±à

[2] Öйú¹¤³ÌÔºÔº¿¯¡¶Engineering¡·ÇàÄê±àί

[3] ½¹µãÆÚ¿¯¡¶Ê¯ÓÍ¿Æѧת´ï¡·Ö´Ðбàί

[4] ¹ú¼Ò±ê×¼»¯ÖÎÀíίԱ»áÄÜÔ´ÖÎÀí±ðÀëÒÕίԱ»á ίԱ

[5] ¹ú¼Ê±ê×¼»¯×éÖ¯£¨ISO£©ÊÂÇé×éר¼Ò

[6] Õã½­Ç廪³¤Èý½ÇÑо¿Ôº ¿Í×ùÑо¿Ô±

[7] ¹«º£²Ê´¬£¨±±¾©£©Ê¯¹¤Ñ§ÔºÑ§ÊõίԱ»á ίԱ

[8] ¹«º£²Ê´¬£¨±±¾©£©ÓÍÆøÌ↑·¢Ñ§¿ÆѧÊõ´ø¶¯ÈËÖúÀí

[9] ½ÌÓý²¿²©Ê¿ÂÛÎÄÆÀÉóר¼Ò

[10] ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÏîÄ¿ÉóÆÀר¼Ò

[11] ÃÀ¹úʯÓ͹¤³Ìʦѧ»á »áÔ±


´ú±íÐÔÆÚ¿¯ÂÛÎÄ£º

[1] Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery. Fuel, 2022.

[2] Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water. Advances in Geo-Energy Research, 2022.

[3] Extraction of shale oil with supercritical CO2: Effects of number of fractures and injection pressure. Fuel, 2021.

[4] Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering, 2021.

[5] Experimental study on EOR performance of CO2-based flooding methods on tight oil. Fuel, 2021.

[6] Three-Dimensional Numerical Simulation of Multiscale Fractures and Multiphase Flow in Heterogeneous Unconventional Reservoirs with Coupled Fractal Characteristics. Geofluids, 2021.

[7] Determination of minimum near miscible pressure region during CO2 and associated gas injection for tight oil reservoir in Ordos Basin China. Fuel, 2020.

[8] Semi-analytical Modelling of Water Injector Test with Fractured Channel in Tight Oil Reservoir. Rock Mechanics and Rock Engineering, 2020.

[9] Feasibility Study of Improved Unconventional Reservoir Performance with Carbonated Water and Surfactant. Energy, 2019.

[10] Application of Cumulative-in-situ-injection-production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changqing Oilfield£¬ China. Fuel, 2019.

[11] Interference well-test model for vertical well with double-segment fracture in a multi-well system. Journal of Petroleum Science and Engineering, 2019.

[12] Interference testing model of multiply fractured horizontal well with multiple injection wells. Journal of Petroleum Science and Engineering, 2019.

[13] Pressure-Transient Analysis of Water Injectors Considering the Multiple Closures of Waterflood-Induced Fractures in Tight Reservoir: Case Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2019.

[14] A compositional model for CO2 flooding including CO2 equilibria between water and oil using the Peng-Robinson equation of state with the Wong-Sandler mixing rule. Petroleum Science, 2019.

[15] Simulation study of allied in-situ injection and production for enhancing shale oil recovery and CO2 emission control. Energies, 2019.

[16] Analytical interference testing analysis of multi-segment horizontal well. Journal of Petroleum Science and Engineering, 2018.

[17] An Innovative Model to Evaluate Fracture Closure of Multi-Fractured Horizontal Well In Tight Gas Reservoir Based on Bottom-Hole Pressure. Journal of Natural Gas Science and Engineering, 2018.

[18] A Novel Well-Testing Model to Analyze Production Distribution of Multi-Stage Fractured Horizontal Well. Journal of Natural Gas Science and Engineering, 2018.

[19] A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir. SPE Journal, 2017.

[20] The Physical Process and Pressure-Transient Analysis Considering Fractures Excessive Extension in Water Injection Wells. Journal of Petroleum Science and Engineering, 2017.

[21] Semi-Analytical Modeling for Water Injection Well in Tight Reservoir Considering the Variation of Waterflood-Induced Fracture Properties¨CCase Studies in Changqing Oilfield China. Journal of Petroleum Science and Engineering, 2017.

[22] A Semianalytical Approach to Estimate Fracture Closure and Formation Damage of Vertically Fractured Wells in Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 2016.

[23] Investigation of Nanoparticle Adsorption During Transport in Porous Media. SPE Journal, 2015.

[24] Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 2015.

[25] Well testing interpretation method and application in triple©\layer reservoirs by polymer flooding. Materialwissenschaft Und Werkstofftechnik, 2015.

[26] Transport and retention of aqueous dispersions of superparamagnetic nanoparticles in sandstone. Journal of Petroleum Science and Engineering, 2014.

[27] ÁѺÛÐԷǾùÖÊÖÂÃÜ´¢²ã×Ô˳ӦӦÁ¦Ãô¸ÐÐÔÑо¿. ʯÓÍ×ê̽ÊÖÒÕ, 2022.

[28] ÖÂÃÜÉ°ÑÒÄæÏòÉøÎü×÷ÓþàÀëʵÑéÑо¿. Á¦Ñ§Ñ§±¨, 2021.

[29] ̼»¯Ë®ÇýÌá¸ß²ÉÊÕÂÊÑо¿Ï£Íû. ʯÓÍ¿Æѧת´ï, 2020.

[30] ÖÂÃÜÓͲØ̼»¯Ë®ÇýÌá¸ß²ÉÊÕÂÊÒªÁì. ´óÇìʯÓ͵ØÖÊÓ뿪·¢, 2019.

[31] ˮƽ¾®Í¬¾®×¢²ÉÊÖÒÕ. ´óÇìʯÓ͵ØÖÊÓ뿪·¢, 2019.

[32] ѹÁÑˮƽ¾®ÁѺۺÍˮƽ¾®Í²²»¹æÔò²úÓÍÊÔ¾®ÆÊÎö. ´óÇìʯÓ͵ØÖÊÓ뿪·¢, 2018.

[33] ÖÂÃÜÓͲض༶ѹÁѾ®Òì¾®Òì²½×¢²É¿ÉÐÐÐÔÑо¿. ʯÓÍ¿Æѧת´ï, 2018.

[34] ÄÜÔ´ÖÎÀíϵͳÆÀ¼ÛÖ¸±êÓëÓ¦ÓÃÏÖ×´ÆÊÎö. Öйú±ê×¼»¯, 2018.

[35] ÖÂÃÜÓͲض༶ѹÁÑˮƽ¾®Í¬¾®·ì¼ä×¢²É¿ÉÐÐÐÔ. ʯÓÍѧ±¨, 2017.

[36] ¶à¶ÎѹÁÑˮƽ¾®²»ÔȳƲúÓÍÊÔ¾®Ä£×Ó. ¹«º£²Ê´¬Ñ§±¨:×ÔÈ»¿Æѧ°æ, 2017.

[37] ISO50006¡¢ISO50015ÓëISO50047µÄ½ÏÁ¿Óë̽ÌÖ. ±ê×¼¿Æѧ, 2016.

´ú±íÐÔ¾Û»áÂÛÎÄ£º

[1] Application of inter-fracture injection and production in a cluster well to enhance oil recovery. SPE Annual Technical Conference and Exhibition, 2019.

[2] Allied in-situ injection and production for fractured horizontal wells to increase hydrocarbon recovery in tight oil reservoirs: a case study in Changqing Oilfield. International Petroleum Technology Conference, 2019.

[3] A Novel Multi-Well Interference Testing Model of a Fractured Horizontal Well and Vertical Wells. SPE Annual Technical Conference and Exhibition, 2018.

[4] Case Studies: Pressure-Transient Analysis for Water Injector with the Influence of Waterflood-Induced Fractures in Tight Reservoir. SPE Improved Oil Recovery Conference, 2018.

[5] Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study. SPE Annual Technical Conference and Exhibition, 2017.

[6] A Novel Well Testing Inversion Method for Characterization of Non-Darcy Flow Behavior in Low Permeability Reservoirs. SPE Annual Technical Conference and Exhibition, USA, 2017.

[7] Successful Application of Well Testing and Electrical Resistance Tomography to Determine Production Contribution of Individual Fracture and Water-Breakthrough Locations of Multifractured Horizontal Well in Changqing Oil Field£¬ China. SPE Annual Technical Conference and Exhibition, 2017.

[8] Transport and Retention of Aqueous Dispersions of Paramagnetic Nanoparticles in Reservoir Rocks. SPE Improved Oil Recovery Symposium, 2010.


¹ú¼Ò·¢Ã÷רÀû£¨ÅÅÃûµÚ1£©£º

[1] ¶¯Ì¬ÉøÎü×°ÖúÍÓÃÓÚ¶¯Ì¬ÉøÎüʵÑéµÄʵÑéÒªÁì. ZL201811482680.X£¬2022ÄêÊÚȨ

[2] ÓÃÓÚÈ·¶¨Í¨¹ýÝÍȡʵÑéÝÍÈ¡³öµÄÓÍÁ¿µÄÒªÁìºÍ×°ÖÃ. ZL201911215681.2£¬2020ÄêÊÚȨ

[3] ¸ßθßѹÌõ¼þÏÂÇ¿»¯Ì¼»¯Ë®µÄÉøÎüϵͳ. ZL201711054256.0£¬2020ÄêÊÚȨ

[4] ÓÃÓÚÈ·¶¨Ì¼»¯Ë®ÇýÓÍÀú³ÌÖÐ̼»¯Ë®¶Ô´¢²ãΣÏÕˮƽµÄÒªÁì. ZL201910187496.0£¬2020ÄêÊÚȨ

[5] ˮƽ¾®¾®ÏÂÆøÒºÊèÉ¢¾®ÉÏ»Ø×¢²ÉÓÍϵͳ¼°ÆäÒªÁì. ZL201810032101.5£¬2020ÄêÊÚȨ

[6] ˮƽ¾®¾®ÏÂÆøÒºÊèÉ¢»Ø×¢²ÉÓÍϵͳ¼°ÆäÒªÁì. ZL201810032637.7£¬2020ÄêÊÚȨ

[7] ÉøÎüÝÍȡװÖü°ÉøÎüÝÍȡʵÑéÒªÁì. ZL201810980994.6£¬2020ÄêÊÚȨ

[8] ¸ßθßѹÌõ¼þÏÂ̼»¯Ë®µÄÇýÌæϵͳ¼°ÆäÒªÁì. ZL201711046782.2£¬2020ÄêÊÚȨ

[9] עˮÓÕ·¢Î¢ÁѺ۶þάÀ©Õ¹µÄÎïÀíÄ£ÄâʵÑéÒªÁì. ZL201710735940.9£¬2019ÄêÊÚȨ

[10] À­Á´Ê½²¼·ìµÄ˫ѹÁÑˮƽ¾®Òì¾®Ò첽עˮ²ÉÓÍÒªÁì. ZL201710078828.2£¬2019ÄêÊÚȨ

[11] ¶Ô³Æʽ²¼·ìµÄ·Ö×éÒì¾®Òì²½×¢CO2²ÉÓÍÒªÁì. ZL201710078827.8£¬2019ÄêÊÚȨ

[12] ¶Ô³Æʽ²¼·ìµÄÒì¾®Òì²½×¢CO2²ÉÓÍÒªÁì. ZL201710078521.2£¬2019ÄêÊÚȨ

[13] ¶à¼¶Ñ¹ÁÑˮƽ¾®·ì¼ä¾àÀëCO2Çý²ÉÓÍÒªÁì. ZL201610564574.0£¬2018ÄêÊÚȨ

[14] ¶à¼¶Ñ¹ÁÑˮƽ¾®·ì¼ä¾àÀëעˮÍÌͲÉÓÍÒªÁì. ZL201610253549.0£¬2018ÄêÊÚȨ

[15] ¶à¼¶Ñ¹ÁÑˮƽ¾®·ì¼ä¾àÀëעˮÍÌͲÉÓÍÒªÁì. ZL201610195661.3£¬2018ÄêÊÚȨ

[16] ˮƽ¾®¶à²ÎÊý×éºÏÕÒË®ÕÉÁ¿×°ÖÃ. ZL201510730997.0£¬2018ÄêÊÚȨ

[17] ʹÓõض¯×ݲ¨Èö²¥Ê±¼äÕ¹ÍûµØ²ã¿×϶ѹÁ¦µÄÒªÁì. ZL201510166143.4£¬2017ÄêÊÚȨ


Æð²Ý±ê×¼£º

¹ú¼Ò±ê×¼GB/T39532-2020¡¶ÄÜÔ´¼¨Ð§ÕÉÁ¿ºÍÑéÖ¤Ö¸ÄÏ¡·

¹ú¼Ò±ê×¼GB/T39775-2021¡¶ÄÜÔ´ÖÎÀí¼¨Ð§ÆÀ¼Ûµ¼Ôò¡·


¡¡¡¡

µØµã£º±±¾©ÊвýƽÇø¸®Ñ§Â·18ºÅ Óʱࣺ102249

ʯ¹¤
ѧԺ
Éè¼Æ
´óÈü

°æȨËùÓУº¹«º£²Ê´¬(±±¾©)

TOP
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿
¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿